Fonctions et Réactions Organiques II

2018-2019 Fall Semester Monday 28-Jan-2019, 12h15 to 15h15, CE3

Total time: 3h

Material allowed:

- Writing materials (pen, pencil, ...calculator)
- Drink and food
- ID or Student Card

Name:

Signature:

Problem 1 (12 pts)

a) Rank the α -CH acidity of the following carbonyl compounds in the order of increasing acidity and justify your answer:

b) Rank the following compounds in the order of increasing basicity and justify your answer:

$$\bigcirc$$
OK \bigcirc OK \bigcirc OK \bigcirc NK \bigcirc NK

c) Ranking the electrophilicity of the following carbonyl group:

Problem 2 (15 pts)

a) Draw two reaction energy diagrams corresponding to the S_N1 and the S_N2 mechanisms of the following nucleophilic substitution reaction, assuming that product ${\bf B}$ is thermodynamically more stable than starting material ${\bf A}$.

- b) Write the rate law for $S_N 1$ and $S_N 2$ reactions, according to their respective reaction energy diagrams.
- c) Diastereoselective Meerwein-Ponndorf-Verley reduction of ketone (R)- \mathbf{C} afforded (R,R)- \mathbf{D} and (S,R)- \mathbf{D} in 83:17 ratio, respectively. Determine the difference in free energies of activation at 50°C for the formation of the two diastereomers. The reaction is kinetically controlled.

Problem 3 (15 pts)

- a) Provide the structures of A, B, C, D, E and F
- b) Provide a detailed reaction mechanism for the formation of compound **F**.

Problem 4 (16 pts)

a) Compound **A** contains three different carbonyl functions that can be reduced chemoselectively. Give the structures of the expected products (**B**, **C**, **D**) in each case.

b) Provide conditions (a, b, c and d) for the conversion of **E** to **F**, **F** to **G** and **F** to **H**. Please pay particular attention on the double bond geometry of the products **F**, **G** and **H**.

Problem 5 (10 pts)

Reaction of boron enolate with aldehyde is highly stereoselective. The Z enolate afford the syn-aldol \mathbf{A} , while the E enolate provided the anti-aldol \mathbf{B} . Please propose a transition state for both reactions to account for these experimental observation.

OBBu₂ + RCHO
$$\longrightarrow$$
 O OBBu₂ \longrightarrow R

Z-enolate \longrightarrow A Syn-Aldol OBBu₂ + RCHO \longrightarrow R

E-enolate \longrightarrow B Anti-Aldol

Problem 6 (18 pts)

- a) Please provide the structures of compounds A, B, C, D and E.
- b) Please propose a detailed mechanism for the conversion of F to E

Problem 7 (14 pts)

Provide the structures of A, B, C, D, E, F and G

OH
$$\xrightarrow{\text{KH, THF, reflux}}$$
 A then H⁺
(Oxy-Cope rearrangement)

Heat \longrightarrow B \longrightarrow C eq 2

OH Ph \longrightarrow D eq 3

NOH \longrightarrow E eq 4

ON₂ Silver salt \longrightarrow F \longrightarrow G eq 5